This is one of the following sixteen articles on Single-Factor ANOVA in Excel
Overview of Single-Factor ANOVA
Single-Factor ANOVA in 5 Steps in Excel 2010 and Excel 2013
Shapiro-Wilk Normality Test in Excel For Each Single-Factor ANOVA Sample Group
Kruskal-Wallis Test Alternative For Single Factor ANOVA in 7 Steps in Excel 2010 and Excel 2013
Levene’s and Brown-Forsythe Tests in Excel For Single-Factor ANOVA Sample Group Variance Comparison
Single-Factor ANOVA - All Excel Calculations
Overview of Post-Hoc Testing For Single-Factor ANOVA
Tukey-Kramer Post-Hoc Test in Excel For Single-Factor ANOVA
Games-Howell Post-Hoc Test in Excel For Single-Factor ANOVA
Overview of Effect Size For Single-Factor ANOVA
ANOVA Effect Size Calculation Eta Squared in Excel 2010 and Excel 2013
ANOVA Effect Size Calculation Psi – RMSSE – in Excel 2010 and Excel 2013
ANOVA Effect Size Calculation Omega Squared in Excel 2010 and Excel 2013
Power of Single-Factor ANOVA Test Using Free Utility G*Power
Single-Factor ANOVA
in 5 Steps in Excel
A company was attempting to determine whether there was a difference in results produced by three different training programs. The three unique training programs had the same objective and the training results were by a single, common test taken by participants at the end of the training.
In this test three groups of similar employees underwent the training. Each of the three groups was put through one of the three training programs so no group was given the same training program. At the end of the training, all participants in each group were given the same test. The groups all had a different number of participants. The test results from all three groups were as follows:
(Click Image To See a Larger Version)
Group 1 had 22 participants. Group 2 had 23 participants, Group 3 had 19 participants.
Single-Factor ANOVA Step 1 – Place Data in Excel Group Columns
The Excel Single-Factor ANOVA tool requires that the data be arranged in columns. Each data column will hold only data whose categorical variable is the same. In this case, all data whose categorical variable is Group 1 will be in the first column, Group 2 in the second column, and Group 3 data in the third column.
Quite often the data is not conveniently arranged that way. Very often the data is arranged in one long column with each row containing each observation’s independent (categorical) variable value and its dependent (measured) value as follows:
(Click Image To See a Larger Version)
The data now has to be separated into columns so that each column contains data from one level of the independent variable. In other words, each column will contain a unique group of data that will consist of all data having a single level of the independent variable. This will be done as follows:
(Click Image To See a Larger Version)
The blank cells now have to be removed from the columns. This is accomplished as follows:
(Click Image To See a Larger Version)
Cell J3 contains the formula:
=IF(ISNUMBER(LARGE($E$3:$E$22,ROW()-ROW($J$2))),LARGE($E$3:$E$22,ROW()-ROW($J$2)),"")
Cell K3 contains the formula:
=IF(ISNUMBER(LARGE($F$3:$F$22,ROW()-ROW($K$2))),LARGE($F$3:$F$22,ROW()-ROW($K$2)),"")
Cell L3 contains the formula:
=IF(ISNUMBER(LARGE($G$3:$G$22,ROW()-ROW($L$2))),LARGE($G$3:$G$22,ROW()-ROW($L$2)),"")
These three formulas are copied down to row 22 to produce the result shown here.
It is easier to work with sorted data columns when performing Single-Factor ANOVA so the data will be sorted in the next step. Data can be sorted in Excel by copying a single command down a column as follows:
(Click Image To See a Larger Version)
(Click Image To See a Larger Version)
Single-Factor ANOVA Step 2 – Remove Extreme Outliers
Calculation of the mean is one of the fundamental computations when performing ANOVA. The mean is unduly affected by outliers. Extremely outliers should be removed before ANOVA. Not all outliers should be removed. An outlier should be removed if it is obviously extreme and inconsistent with the remainder of the data.
Find Outliers From the Sorted Data
An easy way to spot extreme outliers is to look at the sorted data. Extremely high or low outlier values will appear at the ends of the sort. A convenient, one-step method to sort a column of data in Excel is shown here.
The formula is cell H2 is the following:
=IF($D2=””,””,LARGE($D$2:$D$19,ROW()-ROW($D$1)))
Copy this formula down as shown to create a descending sort of the data in cells D2 to D19.
Exchanging the word SMALL for LARGE would create an ascending sort instead of the descending sort performed here.
No extreme outliers are apparent from the sort.
Find Outliers By Standardizing Residuals
Another way to evaluate data for outliers is to calculate the standardized residual value for each data point. In the case of ANOVA, the residual for each data point is the difference between the data point and its group mean. The standardized residual value is simply this residual length expressed as the number of standard deviations.
For example, the value in cell G3 is calculated by the following formula:
=ABS((C3-AVERAGE($C$3:$C$20))/STDEV($C$3:$C$20))
Quite often outliers are considered to be those data that are more than three standard deviations from the group mean. No data points are that far from the column mean. The farthest data point is only 2.15 standard deviations from its column mean. These numbers are shown as follows:
(Click Image To See a Larger Version)
After obvious outliers have been removed, it is good idea to visually inspect a box plot of data to get a better feel for the dispersion between groups (how spread out the group means are) and within the groups (how dispersed is the data within each group).
(Click Image To See a Larger Version)
All data points that are deemed extreme outliers and removed should be recorded. Before an outlier is removed, causes of the outlying value should be considered. It is always a good idea to ensure that no data recording errors or data measurement errors have cause outlying values. Any reports that record and interpret the results of the ANOVA test should list any outlier values that were removed and the reason that they were removed.
Single-Factor ANOVA Step 3 – Verify Required Assumptions
Single-Factor ANOVA Required Assumptions
Single-Factor ANOVA has six required assumptions whose validity should be confirmed before this test is applied. The six required assumptions are the following:
1) Independence of Sample Group Data - Sample groups must be differentiated in such a way that there can be no cross-over of data between sample groups. No data observation in any sample group could have been legitimately placed in another sample group. No data observation affects the value of another data observation in the same group or in a different group. This is verified by an examination of the test procedure.
2) Sample Data Are Continuous - Sample group data (the dependent variable’s measured value) can be ratio or interval data, which are the two major types of continuous data. Sample group data cannot be nominal or ordinal data, which are the two major types of categorical data.
3) Independent Variable is Categorical - The determinant of which group each data observation belongs to is a categorical, independent variable. Single-factor ANOVA uses a single categorical variable that has at least two levels. All data observations associated with each variable level represent a unique data group and will occupy a separate column on the Excel worksheet.
4) Extreme Outliers Removed If Necessary - ANOVA is a parametric test that relies upon calculation of the means of sample groups. Extreme outliers can skew the calculation of the mean. Outliers should be identified and evaluated for removal in all sample groups. Occasional outliers are to be expected in normally-distributed data but all outliers should be evaluated to determine whether their inclusion will produce a less representative result of the overall data than their exclusion.
5) Normally-Distributed Data In All Sample Groups - Single-factor ANOVA is a parametric test having the required assumption the data from each sample group comes from a normally-distributed population. Each sample group’s data should be tested for normality. Normality testing becomes significantly less powerful (accurate) when a group’s size fall below 20. An effort should be made to obtain group sizes that exceed 20 to ensure that normality tests will provide accurate results.
6) Relatively Similar Variances In All Sample Groups - Single-Factor ANOVA requires that sample groups are obtained from populations that have similar variances. This requirement is often worded to state that the populations must have equal variances. The variances do not have to be exactly equal but do have to be similar enough so the variance testing of the sample groups will not detect significant differences. Variance testing becomes significantly less powerful (accurate) when a group’s size fall below 20. An effort should be made to obtain group sizes that exceed 20 to ensure that variance tests will provide accurate results.
Determining If Sample Groups Are Normally-Distributed
There are a number of normality test that can be performed on each group’s data. The normality test that is preferred because it is considered to be more powerful (accurate) than the others, particularly with smaller sample sizes is the Shapiro-Wilk test.
Nonparametric Alternatives To Single-Factor ANOVA For Non-Normal Data
When groups cannot be shown to all have normally-distributed data, a nonparametric test called the Kruskal-Wallis test should be performed instead of Single-Factor ANOVA. The Kruskal-Wallis test will be performed on the original sample data in a blog article shortly following this one.
Determining If Sample Groups Have Similar Variances
Single-Factor ANOVA requires that the variances of all sample groups be similar. Sample groups that have similar variances are said to be homoscedastistic. Sample groups that have significantly different variances are said to be heteroscedastistic.
A rule-of-thumb is as follows: Variances are considered similar if the standard deviation of any one group is no more than twice as large as the standard deviation of any other group. That is the case here as the following are true:
s1 = Group1 standard deviation = 1.495
s2 = Group2 standard deviation = 1.514
s3 = Group3 standard deviation = 1.552
The variances of all three groups are very similar. A quick look at the box plot of the data would have confirmed that as well.
Two statistical tests are commonly performed when it is necessary to evaluate the equality of variances in sample groups. These tests are Levene’s Test and the Brown-Forsythe Test. The Brown-Forsythe Test is more robust against outliers but Levene’s Test is the more popular test.
Alternative Tests To Single-Factor ANOVA When Groups Variances Are Not Similarity
When groups cannot be shown to have homogeneous (similar) variances, either Welch’s ANOVA or the Brown-Forsythe F test should be used in place of Single-Factor ANOVA. Both of these tests will be performed on the same data set in blog articles after this one.
Single-Factor ANOVA Step 4 – Run the Single-Factor ANOVA Tool in Excel
The Single-Factor ANOVA tool can be found in Excel 2007 and later by clicking the Data Analysis link located under the Data tab. In Excel 2003, the Data Analysis link is located in the Tool drop-down menu. Clicking Anova: Single-Factor brings up the Excel dialogue box for this tool.
The data need to be arranged in contiguous (columns touching with the rows correctly lined up) columns. The completed dialogue box for this data set would appear as follows:
(Click Image To See a Larger Version)
Hitting OK runs the tools and produces the following output:
(Click Image To See a Larger Version)
The meaning of this output can be understood by reviewing the Null and Alternative Hypotheses that Single-Factor ANOVA evaluates.
The Null Hypothesis states that all populations from which all samples were drawn have the same mean.
Null Hypothesis = H0: µ1 = µ2 = … = µk (k equals the number of sample groups)
Note that Null Hypothesis is not referring to the sample means, s1 , s2 , … , sk, but to the population means, µ1 , µ2 , … , µk.
The Alternative Hypothesis for Single-Factor ANOVA states that at least one sample group is likely to have come from a different population. Single-Factor ANOVA does not clarify which groups are different or how large any of the differences between the groups are. This Alternative Hypothesis only states whether at least one sample group is likely to have come from a different population.
Alternative Hypothesis = H0: µi ≠ µj for some i and j
Single-Factor ANOVA Step 5 – Interpret the Excel Output
The Null Hypothesis is rejected if ANOVA’s calculated p Value is smaller than the designated Level of Significance (alpha). Alpha is most commonly set at 0.05. In this case the Null Hypothesis would be rejected because the p Value (0.0369) is smaller than Alpha (0.05).
The exact interpretation of a p value of 0.0369 is that there is only a 3.96 percent chance that samples having these values could have been drawn if all of the populations had the same means.
Although a Hypothesis Test can only result in the rejection of the Null Hypothesis, we can conclude with at least 95 percent certainty that at least one sample has been drawn from a population with a different mean than the other samples.
ANOVA can only indicate that at least one sample is different but ANOVA does not provide specific information about where that difference comes from. Further testing called Post-Hoc testing can indicate from where the specific differences have come from. Post-Hoc testing on this data set will shortly be performed in blog articles after this one.
Excel Master Series Blog Directory
Statistical Topics and Articles In Each Topic
- Histograms in Excel
- Bar Chart in Excel
- Combinations & Permutations in Excel
- Normal Distribution in Excel
- Overview of the Normal Distribution
- Normal Distribution’s PDF (Probability Density Function) in Excel 2010 and Excel 2013
- Normal Distribution’s CDF (Cumulative Distribution Function) in Excel 2010 and Excel 2013
- Solving Normal Distribution Problems in Excel 2010 and Excel 2013
- Overview of the Standard Normal Distribution in Excel 2010 and Excel 2013
- An Important Difference Between the t and Normal Distribution Graphs
- The Empirical Rule and Chebyshev’s Theorem in Excel – Calculating How Much Data Is a Certain Distance From the Mean
- Demonstrating the Central Limit Theorem In Excel 2010 and Excel 2013 In An Easy-To-Understand Way
- t-Distribution in Excel
- Binomial Distribution in Excel
- z-Tests in Excel
- Overview of Hypothesis Tests Using the Normal Distribution in Excel 2010 and Excel 2013
- One-Sample z-Test in 4 Steps in Excel 2010 and Excel 2013
- 2-Sample Unpooled z-Test in 4 Steps in Excel 2010 and Excel 2013
- Overview of the Paired (Two-Dependent-Sample) z-Test in 4 Steps in Excel 2010 and Excel 2013
- t-Tests in Excel
- Overview of t-Tests: Hypothesis Tests that Use the t-Distribution
- 1-Sample t-Tests in Excel
- 1-Sample t-Test in 4 Steps in Excel 2010 and Excel 2013
- Excel Normality Testing For the 1-Sample t-Test in Excel 2010 and Excel 2013
- 1-Sample t-Test – Effect Size in Excel 2010 and Excel 2013
- 1-Sample t-Test Power With G*Power Utility
- Wilcoxon Signed-Rank Test in 8 Steps As a 1-Sample t-Test Alternative in Excel 2010 and Excel 2013
- Sign Test As a 1-Sample t-Test Alternative in Excel 2010 and Excel 2013
- 2-Independent-Sample Pooled t-Tests in Excel
- 2-Independent-Sample Pooled t-Test in 4 Steps in Excel 2010 and Excel 2013
- Excel Variance Tests: Levene’s, Brown-Forsythe, and F Test For 2-Sample Pooled t-Test in Excel 2010 and Excel 2013
- Excel Normality Tests Kolmogorov-Smirnov, Anderson-Darling, and Shapiro Wilk Tests For Two-Sample Pooled t-Test
- Two-Independent-Sample Pooled t-Test - All Excel Calculations
- 2- Sample Pooled t-Test – Effect Size in Excel 2010 and Excel 2013
- 2-Sample Pooled t-Test Power With G*Power Utility
- Mann-Whitney U Test in 12 Steps in Excel as 2-Sample Pooled t-Test Nonparametric Alternative in Excel 2010 and Excel 2013
- 2- Sample Pooled t-Test = Single-Factor ANOVA With 2 Sample Groups
- 2-Independent-Sample Unpooled t-Tests in Excel
- 2-Independent-Sample Unpooled t-Test in 4 Steps in Excel 2010 and Excel 2013
- Variance Tests: Levene’s Test, Brown-Forsythe Test, and F-Test in Excel For 2-Sample Unpooled t-Test
- Excel Normality Tests Kolmogorov-Smirnov, Anderson-Darling, and Shapiro-Wilk For 2-Sample Unpooled t-Test
- 2-Sample Unpooled t-Test Excel Calculations, Formulas, and Tools
- Effect Size for a 2-Independent-Sample Unpooled t-Test in Excel 2010 and Excel 2013
- Test Power of a 2-Independent Sample Unpooled t-Test With G-Power Utility
- Paired (2-Sample Dependent) t-Tests in Excel
- Paired t-Test in 4 Steps in Excel 2010 and Excel 2013
- Excel Normality Testing of Paired t-Test Data
- Paired t-Test Excel Calculations, Formulas, and Tools
- Paired t-Test – Effect Size in Excel 2010, and Excel 2013
- Paired t-Test – Test Power With G-Power Utility
- Wilcoxon Signed-Rank Test in 8 Steps As a Paired t-Test Alternative
- Sign Test in Excel As A Paired t-Test Alternative
- Hypothesis Tests of Proportion in Excel
- Hypothesis Tests of Proportion Overview (Hypothesis Testing On Binomial Data)
- 1-Sample Hypothesis Test of Proportion in 4 Steps in Excel 2010 and Excel 2013
- 2-Sample Pooled Hypothesis Test of Proportion in 4 Steps in Excel 2010 and Excel 2013
- How To Build a Much More Useful Split-Tester in Excel Than Google's Website Optimizer
- Chi-Square Independence Tests in Excel
- Chi-Square Goodness-Of-Fit Tests in Excel
- F Tests in Excel
- Correlation in Excel
- Pearson Correlation in Excel
- Spearman Correlation in Excel
- Confidence Intervals in Excel
- z-Based Confidence Intervals of a Population Mean in 2 Steps in Excel 2010 and Excel 2013
- t-Based Confidence Intervals of a Population Mean in 2 Steps in Excel 2010 and Excel 2013
- Minimum Sample Size to Limit the Size of a Confidence interval of a Population Mean
- Confidence Interval of Population Proportion in 2 Steps in Excel 2010 and Excel 2013
- Min Sample Size of Confidence Interval of Proportion in Excel 2010 and Excel 2013
- Simple Linear Regression in Excel
- Overview of Simple Linear Regression in Excel 2010 and Excel 2013
- Complete Simple Linear Regression Example in 7 Steps in Excel 2010 and Excel 2013
- Residual Evaluation For Simple Regression in 8 Steps in Excel 2010 and Excel 2013
- Residual Normality Tests in Excel – Kolmogorov-Smirnov Test, Anderson-Darling Test, and Shapiro-Wilk Test For Simple Linear Regression
- Evaluation of Simple Regression Output For Excel 2010 and Excel 2013
- All Calculations Performed By the Simple Regression Data Analysis Tool in Excel 2010 and Excel 2013
- Prediction Interval of Simple Regression in Excel 2010 and Excel 2013
- Multiple Linear Regression in Excel
- Basics of Multiple Regression in Excel 2010 and Excel 2013
- Complete Multiple Linear Regression Example in 6 Steps in Excel 2010 and Excel 2013
- Multiple Linear Regression’s Required Residual Assumptions
- Normality Testing of Residuals in Excel 2010 and Excel 2013
- Evaluating the Excel Output of Multiple Regression
- Estimating the Prediction Interval of Multiple Regression in Excel
- Regression - How To Do Conjoint Analysis Using Dummy Variable Regression in Excel
- Logistic Regression in Excel
- Logistic Regression Overview
- Logistic Regression in 6 Steps in Excel 2010 and Excel 2013
- R Square For Logistic Regression Overview
- Excel R Square Tests: Nagelkerke, Cox and Snell, and Log-Linear Ratio in Excel 2010 and Excel 2013
- Likelihood Ratio Is Better Than Wald Statistic To Determine if the Variable Coefficients Are Significant For Excel 2010 and Excel 2013
- Excel Classification Table: Logistic Regression’s Percentage Correct of Predicted Results in Excel 2010 and Excel 2013
- Hosmer- Lemeshow Test in Excel – Logistic Regression Goodness-of-Fit Test in Excel 2010 and Excel 2013
- Single-Factor ANOVA in Excel
- Overview of Single-Factor ANOVA
- Single-Factor ANOVA in 5 Steps in Excel 2010 and Excel 2013
- Shapiro-Wilk Normality Test in Excel For Each Single-Factor ANOVA Sample Group
- Kruskal-Wallis Test Alternative For Single Factor ANOVA in 7 Steps in Excel 2010 and Excel 2013
- Levene’s and Brown-Forsythe Tests in Excel For Single-Factor ANOVA Sample Group Variance Comparison
- Single-Factor ANOVA - All Excel Calculations
- Overview of Post-Hoc Testing For Single-Factor ANOVA
- Tukey-Kramer Post-Hoc Test in Excel For Single-Factor ANOVA
- Games-Howell Post-Hoc Test in Excel For Single-Factor ANOVA
- Overview of Effect Size For Single-Factor ANOVA
- ANOVA Effect Size Calculation Eta Squared in Excel 2010 and Excel 2013
- ANOVA Effect Size Calculation Psi – RMSSE – in Excel 2010 and Excel 2013
- ANOVA Effect Size Calculation Omega Squared in Excel 2010 and Excel 2013
- Power of Single-Factor ANOVA Test Using Free Utility G*Power
- Welch’s ANOVA Test in 8 Steps in Excel Substitute For Single-Factor ANOVA When Sample Variances Are Not Similar
- Brown-Forsythe F-Test in 4 Steps in Excel Substitute For Single-Factor ANOVA When Sample Variances Are Not Similar
- Two-Factor ANOVA With Replication in Excel
- Two-Factor ANOVA With Replication in 5 Steps in Excel 2010 and Excel 2013
- Variance Tests: Levene’s and Brown-Forsythe For 2-Factor ANOVA in Excel 2010 and Excel 2013
- Shapiro-Wilk Normality Test in Excel For 2-Factor ANOVA With Replication
- 2-Factor ANOVA With Replication Effect Size in Excel 2010 and Excel 2013
- Excel Post Hoc Tukey’s HSD Test For 2-Factor ANOVA With Replication
- 2-Factor ANOVA With Replication – Test Power With G-Power Utility
- Scheirer-Ray-Hare Test Alternative For 2-Factor ANOVA With Replication
- Two-Factor ANOVA Without Replication in Excel
- Randomized Block Design ANOVA in Excel
- Repeated-Measures ANOVA in Excel
- Single-Factor Repeated-Measures ANOVA in 4 Steps in Excel 2010 and Excel 2013
- Sphericity Testing in 9 Steps For Repeated Measures ANOVA in Excel 2010 and Excel 2013
- Effect Size For Repeated-Measures ANOVA in Excel 2010 and Excel 2013
- Friedman Test in 3 Steps For Repeated-Measures ANOVA in Excel 2010 and Excel 2013
- ANCOVA in Excel
- Normality Testing in Excel
- Creating a Box Plot in 8 Steps in Excel
- Creating a Normal Probability Plot With Adjustable Confidence Interval Bands in 9 Steps in Excel With Formulas and a Bar Chart
- Chi-Square Goodness-of-Fit Test For Normality in 9 Steps in Excel
- Kolmogorov-Smirnov, Anderson-Darling, and Shapiro-Wilk Normality Tests in Excel
- Nonparametric Testing in Excel
- Mann-Whitney U Test in 12 Steps in Excel
- Wilcoxon Signed-Rank Test in 8 Steps in Excel
- Sign Test in Excel
- Friedman Test in 3 Steps in Excel
- Scheirer-Ray-Hope Test in Excel
- Welch's ANOVA Test in 8 Steps Test in Excel
- Brown-Forsythe F Test in 4 Steps Test in Excel
- Levene's Test and Brown-Forsythe Variance Tests in Excel
- Chi-Square Independence Test in 7 Steps in Excel
- Chi-Square Goodness-of-Fit Tests in Excel
- Chi-Square Population Variance Test in Excel
- Post Hoc Testing in Excel
- Creating Interactive Graphs of Statistical Distributions in Excel
- Interactive Statistical Distribution Graph in Excel 2010 and Excel 2013
- Interactive Graph of the Normal Distribution in Excel 2010 and Excel 2013
- Interactive Graph of the Chi-Square Distribution in Excel 2010 and Excel 2013
- Interactive Graph of the t-Distribution in Excel 2010 and Excel 2013
- Interactive Graph of the t-Distribution’s PDF in Excel 2010 and Excel 2013
- Interactive Graph of the t-Distribution’s CDF in Excel 2010 and Excel 2013
- Interactive Graph of the Binomial Distribution in Excel 2010 and Excel 2013
- Interactive Graph of the Exponential Distribution in Excel 2010 and Excel 2013
- Interactive Graph of the Beta Distribution in Excel 2010 and Excel 2013
- Interactive Graph of the Gamma Distribution in Excel 2010 and Excel 2013
- Interactive Graph of the Poisson Distribution in Excel 2010 and Excel 2013
- Solving Problems With Other Distributions in Excel
- Solving Uniform Distribution Problems in Excel 2010 and Excel 2013
- Solving Multinomial Distribution Problems in Excel 2010 and Excel 2013
- Solving Exponential Distribution Problems in Excel 2010 and Excel 2013
- Solving Beta Distribution Problems in Excel 2010 and Excel 2013
- Solving Gamma Distribution Problems in Excel 2010 and Excel 2013
- Solving Poisson Distribution Problems in Excel 2010 and Excel 2013
- Optimization With Excel Solver
- Maximizing Lead Generation With Excel Solver
- Minimizing Cutting Stock Waste With Excel Solver
- Optimal Investment Selection With Excel Solver
- Minimizing the Total Cost of Shipping From Multiple Points To Multiple Points With Excel Solver
- Knapsack Loading Problem in Excel Solver – Optimizing the Loading of a Limited Compartment
- Optimizing a Bond Portfolio With Excel Solver
- Travelling Salesman Problem in Excel Solver – Finding the Shortest Path To Reach All Customers
- Chi-Square Population Variance Test in Excel
- Analyzing Data With Pivot Tables
- SEO Functions in Excel
- Time Series Analysis in Excel
- VLOOKUP
There are many data problems occur in a day around us, which cannot be solve by us and we have to hire the data scientist or expert for solving and understanding these data problems. So for getting the best data scientist for your data problem always choose this https://activewizards.com/, because here you can get the best and professional data scientist on very cheap rates.
ReplyDelete